skip to main content


Search for: All records

Editors contains: "Chorover, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wymore, A.S. ; Yang, W.H. ; Silver, W.L. ; McDowell, W.H. ; Chorover, J. (Ed.)
    The study of Critical Zone (CZ) biogeochemistry in Intensively Managed Landscapes is a study of transitions. Large-scale anthropogenic inputs in the form of agricultural practices have induced significant shifts in the transport and transformation of water, carbon, and nutrients across the landscape. Disentangling the present-day complexity of physical, biological, and hydrologic CZ processes in intensively managed landscapes requires us to first understand the interplay between underlying natural processes which have occurred over geologic time scales from the overpowering, comparatively abrupt onset of intensive agricultural practices that have dominated the landscape in recent centuries. Modeling provides a unique advantage to extricate such complex processes. Advancements in recent years have improved our ability to elucidate (1) the coevolution of soil organic carbon storage, movement, and decomposition under climate and land cover changes, (2) the impacts of intensive agricultural management practices on age-nutrient dynamics and their consequential modification of rates and landscape fluxes, and (3) the integral regulatory role of vegetation and root exudation on CZ biogeochemical processes. In this chapter, we will review several recent models developed in the Intensively Managed Landscape Critical Zone Observatory in Illinois, USA that advance our understanding of critical transitions in biogeochemical dynamics due to intensive management and discuss future challenges. 
    more » « less
  2. Wymore, A. ; Yang, W. ; Silver, W. ; McDowell, B. ; Chorover, J. (Ed.)
    Biogeochemical processes are often spatially discrete (hot spots) and temporally isolated (hot moments) due to variability in controlling factors like hydrologic fluxes, lithological characteristics, bio-geomorphic features, and external forcing. Although these hot spots and hot moments (HSHMs) account for a high percentage of carbon, nitrogen and nutrient cycling within the Critical Zone, the ability to identify and incorporate them into reactive transport models remains a significant challenge. This chapter provides an overview of the hot spots hot moments (HSHMs) concepts, where past work has largely focused on carbon and nitrogen dynamics within riverine systems. This work is summarized in the context of process-based and data-driven modeling approaches, including a brief description of recent research that casts a wider net to incorporate Hg, Fe and other Critical Zone elements, and focuses on interdisciplinary approaches and concepts. The broader goal of this chapter is to provide an overview of the gaps in our current understanding of HSHMs, and the opportunities therein, while specifically focusing on the underlying parameters and processes leading to their prognostic and diagnostic representation in reactive transport models. 
    more » « less